Help

Welcome!

This community is for professionals and enthusiasts of our products and services.
Share and discuss the best content and new marketing ideas, build your professional profile and become a better marketer together.

0

Deep Q-Network (DQN) Problem.

Avatar
Administrator

The following code attempts to implement a Deep Q-Network (DQN) to solve the CartPole-v1 environment using OpenAI Gym. There are several implementation flaws that may prevent the agent from learning effectively.

Your task is to identify at least three critical issues in the code and suggest appropriate fixes.


=================================================================================

import gym

import torch

import torch.nn as nn

import torch.optim as optim

import random

import numpy as np


env = gym.make("CartPole-v1")


class DQN(nn.Module):

    def __init__(self, state_dim, action_dim):

        super(DQN, self).__init__()

        self.network = nn.Sequential(

            nn.Linear(state_dim, 128),

            nn.ReLU(),

            nn.Linear(128, 128),

            nn.ReLU(),

            nn.Linear(128, action_dim)

        )


    def forward(self, state):

        return self.network(state)


state_dim = env.observation_space.shape[0]

action_dim = env.action_space.n

dqn = DQN(state_dim, action_dim)

optimizer = optim.Adam(dqn.parameters(), lr=0.001)

criterion = nn.MSELoss()


# Experience Replay Buffer

replay_buffer = []


def select_action(state, epsilon):

    if random.random() < epsilon:

        return env.action_space.sample()

    state = torch.FloatTensor(state).unsqueeze(0)

    q_values = dqn(state)

    return torch.argmax(q_values).item()


for episode in range(100):

    state = env.reset()

    done = False

    epsilon = max(0.01, 0.1 - episode / 200)  # Epsilon decay


    while not done:

        action = select_action(state, epsilon)

        next_state, reward, done, _ = env.step(action)

        

        # Store experience in buffer

        replay_buffer.append((state, action, reward, next_state, done))


        # Sample a batch from replay buffer

        if len(replay_buffer) > 32:

            batch = random.sample(replay_buffer, 32)

            state_batch, action_batch, reward_batch, next_state_batch, done_batch = zip(*batch)


            state_batch = torch.FloatTensor(state_batch)

            action_batch = torch.LongTensor(action_batch)

            reward_batch = torch.FloatTensor(reward_batch)

            next_state_batch = torch.FloatTensor(next_state_batch)

            done_batch = torch.FloatTensor(done_batch)


            q_values = dqn(state_batch)

            next_q_values = dqn(next_state_batch).max(1)[0].detach()


            target_q_values = reward_batch + (0.99 * next_q_values * (1 - done_batch))


            loss = criterion(q_values.gather(1, action_batch.unsqueeze(1)).squeeze(), target_q_values)

            

            optimizer.zero_grad()

            loss.backward()

            optimizer.step()


        state = next_state


env.close()


=================================================================================




Avatar
Discard